Monday, September 24, 2012

Fosforilasi Oksidatif


Fosforilasi Oksidatif
Fosforilasi oksidatif adalah suatu lintasan metabolisme yang menggunakan energi yang dilepaskan oleh oksidasi nutrien untuk menghasilkan adenosina trifosfat (ATP). Walaupun banyak bentuk kehidupan di bumi menggunakan berbagai jenis nutrien, hampir semuanya menjalankan fosforilasi oksidatif untuk menghasilkan ATP. Lintasan ini sangat umum digunakan karena ia merupakan cara yang sangat efisien untuk melepaskan energi, dibandingkan dengan proses fermentasi alternatif lainnya seperti glikolisis anaerobik.

Selama fosforilasi oksidatif, elektron ditransfer dari pendonor elektron ke penerima elektron melalui reaksi redoks. Reaksi redoks ini melepaskan energi yang digunakan untuk membentuk ATP. Pada eukariota, reaksi redoks ini dijalankan oleh serangkaian kompleks protein di dalam mitokondria, manakala pada prokariota, protein-protein ini berada di membran dalam sel. Enzim-enzim yang saling berhubungan ini disebut sebagai rantai transpor elektron. Pada eukariota, lima kompleks protein utama terlibat dalam proses ini, manakala pada prokariota, terdapat banyak enzim-enzim berbeda yang terlibat.
Energi yang dilepaskan oleh perpindahan elektron melalui rantai transpor elektron ini digunakan untuk mentranspor proton melewati membran dalam mitokondria. Proses ini disebut kemiosmosis. Transpor ini menghasilkan energi potensial dalam bentuk gradien pH dan potensial listrik di sepanjang membran ini. Energi yang tersimpan dalam bentuk ini dimanfaatkan dengan cara mengijinkan proton mengalir balik melewati membran melalui enzim yang disebut ATP sintase. Enzim ini menggunakan energi seperti ini untuk menghasilkan ATP dari adenosina difosfat (ADP) melalui reaksi fosforilasi. Reaksi ini didorong oleh aliran proton, yang mendorong rotasi salah satu bagian enzim.
Walaupun fosforilasi oksidatif adalah bagian vital metabolisme, ia menghasilkan spesi oksigen reaktif seperti superoksida dan hidrogen peroksida. Hal ini dapat mengakibatkan pembentukan radikal bebas, merusak sel tubuh, dan kemungkinan juga menyebabkan penuaan. Enzim-enzim yang terlibat dalam lintasan metabolisme ini juga merupakan target dari banyak obat dan racun yang dapat menghambat aktivitas enzim.
Fosforilasi oksidatif bekerja dengan cara menggunakan reaksi kimia yang menghasilkan energi untuk mendorong reaksi yang memerlukan energi. Kedua set reaksi ini dikatakan bergandengan. Hal ini berarti bahwa salah satu reaksi tidak dapat berjalan tanpa reaksi lainnya. Alur elektron melalui rantai transpor elektron adalah proses eksergonik, yakni melepaskan energi, manakala sintesis ATP adalah proses endergonik, yakni memerlukan energi. Baik rantai transpor elektron dan ATP sintase terdapat pada membran, dan energi ditransfer dari rantai transpor elektron ke ATP sintase melalui pergerakan proton melewati membran ini. Proses ini disebut sebagai kemiosmosis. Dalam prakteknya, ini mirip dengan sebuah sirkuit listrik, dengan arus proton didorong dari sisi negatif membran ke sisi positif oleh enzim pemompa proton yang ada pada rantai transpor elektron. Enzim ini seperti baterai. Pergerakan proton menciptakan gradien elektrokimia di sepanjang membran, yang sering disebut gaya gerak proton (proton-motive force). Gradien ini mempunyai dua komponen: perbedaan pada konsentrasi proton (gradien pH) dan perbedaan pada potensi listrik. Energi tersimpan dalam bentuk perbedaan potensi listrik dalam mitokondria, dan juga sebagai gradien pH dalam kloroplas.
ATP sintase melepaskan energi yang tersimpan ini dengan melengkapi sirkuit dan mengijinkan proton mengalir balik ke sisi negatif membran. Enzim ini seperti motor listrik, yang menggunakan gaya gerak proton untuk mendorong rotasi strukturnya dan menggunakan pergerakan ini untuk mensintesis ATP.
Energi yang dilepaskan oleh fosforilasi oksidatif ini cukup tinggi dibandingkan dengan energi yang dilepaskan oleh fermentasi anaerobik. Glikolisis hanya menghasilkan 2 molekul ATP, sedangkan pada fosforilasi oksidatif 10 molekul NADH dengan 2 molekul suksinat yang dibentuk dari konversi satu molekul glukosa menjadi karbon dioksida dan air, dihasilkan 30 sampai dengan 36 molekul ATP. Rendemen ATP ini sebenarnya merupakan nilai teoritis maksimum; pada prakteknya, ATP yang dihasilkan lebih rendah dari nilai tersebut


Fotorespirasi adalah sejenis respirasi pada tumbuhan yang dibangkitkan oleh penerimaan cahaya yang diterima oleh daun. Diketahui pula bahwa kebutuhan energi dan ketersediaan oksigen dalam sel juga mempengaruhi fotorespirasi. Walaupun menyerupai respirasi (pernafasan) biasa, yaitu proses oksidasi yang melibatkan oksigen, mekanisme respirasi karena rangsangan cahaya ini agak berbeda dan dianggap sebagai proses fisiologi tersendiri.
Proses
Proses yang disebut juga "asimilasi cahaya oksidatif" ini terjadi pada sel-sel mesofil daun dan diketahui merupakan gejala umum pada tumbuhan C3, seperti kedelai dan padi. Lebih jauh, proses ini hanya terjadi pada stroma dari kloroplas, dan didukung oleh peroksisom dan mitokondria.
Secara biokimia, proses fotorespirasi merupakan cabang dari jalur glikolat. Enzim utama yang terlibat adalah enzim yang sama dalam proses reaksi gelap fotosintesis, Rubisco (ribulosa-bifosfat karboksilase-oksigenase). Rubisco memiliki dua sisi aktif: sisi karboksilase yang aktif pada fotosintesis dan sisi oksigenase yang aktif pada fotorespirasi. Kedua proses yang terjadi pada stroma ini juga memerlukan substrat yang sama, ribulosa bifosfat (RuBP), dan juga dipengaruhi secara positif oleh konsentrasi ion Magnesium dan derajat keasaman (pH) sel. Dengan demikian fotorespirasi menjadi pesaing bagi fotosintesis, suatu kondisi yang tidak disukai kalangan pertanian, karena mengurangi akumulasi energi.
Jika kadar CO2 dalam sel rendah (misalnya karena meningkatnya penyinaran dan suhu sehingga laju produksi oksigen sangat tinggi dan stomata menutup), RuBP akan dipecah oleh Rubisco menjadi P-glikolat dan P-gliserat (dengan melibatkan satu molekul air menjadi glikolat dan P-OH). P-gliserat (P dibaca "fosfo") akan didefosforilasi oleh ADP sehingga membentuk ATP. P-glikolat memasuki proses agak rumit menuju peroksisoma, lalu mitokondria, lalu kembali ke peroksisoma untuk diubah menjadi serin, lalu gliserat. Gliserat masuk kembali ke kloroplas untuk diproses secara normal oleh siklus Calvin menjadi gliseraldehid-3-fosfat (G3P).

Kegunaan

Peran fotorespirasi diperdebatkan namun semua kalangan sepakat bahwa fotorespirasi merupakan penyia-nyiaan energi. Dari sisi evolusi, proses ini dianggap sebagai sisa-sisa ciri masa lampau (relik). Atmosfer pada masa lampau mengandung oksigen pada kadar yang rendah, sehingga fotorespirasi tidak terjadi seintensif seperti masa kini. Fotorespirasi dianggap bermanfaat karena menyediakan CO2 dan NH3 bebas untuk diasimilasi ulang, sehingga dianggap sebagai mekanisme daur ulang (efisiensi). Pendapat lain menyatakan bahwa fotorespirasi tidak memiliki fungsi fisiologis apa pun, baik sebagai penyedia asam amino tertentu (serin dan glisin) maupun sebagai pelindung klorofil dari perombakan karena fotooksidasi.
Karena tidak efisien, sejumlah tumbuhan mengembangkan mekanisme untuk mencegah fotorespirasi. Untuk menekan fotorespirasi, tumbuhan C4 mengembangkan strategi ruang dengan memisahkan jaringan yang melakukan reaksi terang (sel mesofil) dan reaksi gelap (sel selubung pembuluh, atau bundle sheath). Sel-sel mesofil tumbuhan C4 tidak memiliki Rubisco. Strategi yang diambil tumbuhan CAM bersifat waktu (temporal), yaitu memisahkan waktu untuk reaksi terang (pada saat penyinaran penuh) dan reaksi gelap (di malam hari).

No comments:

Post a Comment